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AIJItrad-The constitutive equations for strain-hardening metallic materials with strain-rate effects are
presented in the framework of the endochronic theory of viscoplasticity using the improved intrinsic time
measure. The derived constitutive equations are then applied to the viscoplastic wave-propagation problem
of a thin-walled tube subjected to impact loading. Numerical results using the improved endocbronic time
and theoretical results using conventional plasticity together with the experimental results are compared, It
is shown that they are in good agreement qualitatively. In summary, the improved intrinsic time measure
does predict both loading and unloading behavior in accordance with the observed phenomena.

NOTATION
c wave speed

Eo elastic modulus
8 l material parameters
8, tangent modulus

~ j, k indices
kl scalar number, 0.. kl .. 1

ka, Ie" rate-sensitive material parameters
n, no material parameters

P fourth-order material tensor
Q deviatoric part of r
r stress-like function
t time
u velocity
x spatial coordinate
z endocmonic time scale

a, fl, a h fl1 endochronic material parameters
€ smal1 strain tensor
A heredity function
p mass density
(T stress tensor

~,,,, functions
(1'y yield stress
(1'0 intercept of the asymptotic stress-strain curve at large strain with the stress axis
( intrinsic time measure

I. INTRODUCTION
Intensive interest in the response of structural systems to extreme loads has led to the
requirement of better understanding of material bebavior beyond the elastic limit. In partic61ar,
for the purpose of structural integrity and reliability the design of the aerospace vehicular
system and nuclear power plant facilities requires highly accurate knowledge of material
behavior in the prediction of the dynamic system response. Further development of a vis
coplasticity theory is needed to fuJfill the requirements in those highly sophisticated structural
systems. Traditionally, the flow theory of plasticity (or simply called classical plasticity in this
report) has been widely employed by structural mechanicians. Classical plasticity. which forms
the basis of virtually all theoretical models DOW in use in the general·purpose computer codes,
requires that one traces the evolution of the material yield surface in the stress space and the
location of the stress state of each point in a structure with respect to this surface. However,
calculations relating to yield·surface evolution and logical checks of position on the yield
surface are costly in computer time and storage requirements. A distinctive advantate of the
endaehronic theory proposed here is the potential savings in computer time.
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The endochronic theory of viscoplasticity initiated by Valanis[l] is based on the internal
variable theory of irreversible thermodynamics together with the continuum-mechanics ap
proach. The theory is an attempt to describe the material behavior over a wide spectrum of
response using a unified constitutive equation such that the conventional elastic and inelastic
behavior can be deduced from the general theory by suitable definitions of specific material
parameters.

The original version of endochronic theory, the simple endochronic theory, has been applied
to give analytic predictions for the quasi-static mechanical response of metallic[I-4] and
nonmetallic[5-8] materials, the dynamic response of structures[9-15], and fracture mechanics
and fatigue problems[16-19]. Although the simple endochronic theory can predict most of the
observed mechanical behavior of materials, and it has been demonstrated [15] to save computer
time in modeling the dynamic inelastic response of structural systems, it does show some
discrepancies between experimental and theoretical predictions involving unloading behavior.
Recently, Valanis [20] introduced a new measure of intrinsic time, which can eliminate or
mitigate this deficiency, depending on the choice of a parameters and is more closely
representative of the dissipation properties of material during unloading processes. As a
consequence, the phenomenon of yield and the plastic strain are obtainable for a particular choice
of the intrinsic time measure.

In the following, the general endochronic theory of viscoplasticity using the new intrinsic
time measure is briefly summarized, a set of constitutive equations is obtained in differential
form, and some numerical examples are presented using the new form of constitutive relation
ships to show the influence of various material parameters in the new formulation in terms of
unloading-reloading behavior. Following the discussion of strain-rate effect on the dynamic
behavior of metallic materials, such as a-titanium, the strain-rate-dependent constitutive
equations are applied to investigate the viscoplastic wave-propagation problem related to a
thin-walled tube subjected to an impulse loading.

2. CONSTITUTIVE EQUATIONS IN THE IMPROVED ENDOCHRONIC THEORY OF
VISCOPLASTICITY

In the endochronic theory of viscoplasticity the history of deformation is defined in terms of
a "time scale", which is not measured by a clock, but is in itself a property of the material at
hand. An incremental time measure d( is defined such that

(1)

where €ij is the strain tensor and Pijkf is a positive definite material tensor. In addition, a time scale
zW is introduced [1] such that dz/d( > O. The definition of intrinsic time in eqn (1) has led to
difficulties in describing the material behavior involving unloading. Valanis [20] has since proposed
an improved concept of intrinsic time to account for it. In the one-dimensional case the improved
intrinsic time increment d( is defined as

(2)

where iT and € are, respectively, the stress and strain; kl is a positive scalar such that 0;;. kl ;;. I;
and Eo is elastic modulus. When k. = 0, the improved intrinsic time reduces to the original
definition of intrinsic time, and the theory is called simple endochronic theory. But when kl = I,
eqn (2) reduces to dt = dE - (dulEr,), which is the plastic-strain increment; thus the con
ventional concept of yield may be discussed within the framework of endochronic theory. It
should be remarked that if the case of kl = I is believed to be representative of the metallic
behavior, then by choosing kl to be close to I, say, 0.95, an approximate representation may be
achieved without having to introduce a discontinuity into the constitutive equation. This aspect
is indeed a very important strength of the present approach.

For uniaxial stress, the improved endochronic constitutive equation is

(J' = Eof A(z - z') ~~ dz', (3)



in which

and
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(4)

(5)

where aD. a, and Bt are material parameters. The above equations have been derived for the
case of two internal state variables. However, it has been shown (21) that this simple form is
adequate for most of the cases considered. Furthermore, from eqns (3) and (4), we have

=-EL fZ -ao/l-kt(z-z'ldQd +
(1' 1_ k

l
Jo e dz' z r,

and

Equations (6) and (7) can be rewritten in a differential form as

l-k au
__I d(O' - r)+- (0' - r)dz =dQ,

Eo Eo

and

dr+ ardz = EtdQ.

(6)

(7)

(8)

(9)

The differential form presented here is convenient for use in the numerical computation which
will be demonstrated in this paper,

3, DETERMINATION OF MATERIAL PARAMETERS

The determination of the material constants appearing in the differential form will now be
discussed. This can be done from test information for monotonic loading under constant strain
rate. At this condition, it has been found in (21) that eqns (6) and (7) lead to

where

n=!!+1 (II)
fl '

no= ao+1 (12)13 '

and

fl. =13k. (13)

In the derivation of the above equations, the intrinsic time was given by

d( =k«})IdQI (14)
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for strain-rate-sensitive materials [21, 22], where k(Q) is a plastic strain-rate-dependent function
and may be found from experimental stress-strain curves at various constant strain rates. The
hardening function which provides a scaling to the intrinsic time was given[l] by

d( = 1+ fJY
dz IJ~,

(15)

in which ~ is a material parameter.
Some additional relations between certain quantities and constants may be found from

loading represented by eqn (10). From the definition of the improved intrinsic time (eqn 2) with
kI =1, at the initiation of intrinsic time measure' =0+ (Le. when Q =Q+), (T is equal to the yield
stress. Thus, eqn (10) reduced to

(16)

For large ( (or Q), eqn (10) approaches an asymptotic line given by

(17)

Defining (To as the intercept of this asymptotic line with the stress axis and Et, the tangent
modulus of the asymptotic line, it is possible to establish [21] that

and

fJ _ E,
1-'1- .(To

(18)

(19)

Combining eqns (10), (16), (18) and (19), for k l = 1, the constitutive equations may be
written in the following simple form:

(20)

The material constants, Eo, E
"

(To and (T" can be measured directly from each constant
strain-rate stress-strain curve. Then, ~t may be determined from eqn (19). For a strain rate the
same as the reference strain rate, ~I = f3 is obtained. Equation (20) may then be used to fit the
experimental data by a trial-and-error procedure. The parameter n can. thus be determined.
Finally, eqns (16) and (18) can be used to determine no and E1• The parlUDeters Q and Qo can
also be obtained from eqns (11) and (12).

4. LOADING-UNLOADING-RELOADING RESPONSES

To demonstrate the consequence of the improved intrinsic time , on the behavior of
loading-unloading for metallic materials, eqns (8), (9), (14) and (15) may be rewritten in the
following form, making use of eqn (2):

and

(
1- kl)d _ (1- kl)d _ [1- kao«(T - r)] dQ = 0

Eo (T Eo r + EoO + ~() ,

kar ]
dr-[E+l+~{ dQ=O,

(~Jd(T+dQ = de.

(21)

(22)

(23)
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The above set of constitutive equations is valid for the uniaxial stress case. The negative sign is
for the case of positive strain increment and the positive sign for negative strain increment. All
the material parameters involved can be determined following the discussion presented in the
previous section. To show the influence of parameter kh a set of stress-strain curves for
a-titanium is presented in Fig. 1for k, =0.05, 0.5 and 0.95. For k, = 0.05, it can be seen that the
unloadiq-reloading behavior is of the type of simple endochronic; for k, =0.95, the unloading
reloading behavior approaches the elastic behavior. For k, =1, the unloading-reloading curve is a
straight line, and a distinct yield point is predicted. Therefore, it is seen that the theory with im
proved endochronic time can reasonably describe the elastic-plastic unloading-reloading and
yield phenomena and that the case of k, =0.95 provides a good approximation of this behavior.

600L----------
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FJ&. 2. Cyclic hardeniq behavior of a·ri.
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More figures present the theoretical unloading and reverse-loading behavior for a-titanium with
unloading to various strains ranging from positive to negative values, respectively, can be found in
[36]. These figures clearly show the formation of loading-unloading loops as observed in the
experiments. Figure 2 presents the results of strain-controlled cyclic behavior of a-titanium for the
first three cycles. Here again, the improved endochronic theory provides a reasonable description
of material behavior. The endochronic description of cyclic behavior of metallic materials was
previously discussed by Wu and Yip [22] using the finite form of the endochronic constitutive
equation. In this computation, it is shown that this can also be achieved by use of the differential
form given by eqns (21)-(23).

5. STRAIN-RATE EFFECT IN THE ENDOCHRONIC THEORY OF VISCOPLASTlCITY
The inftuence of strain rate on the mechanical response of materials has been studied

extensively in the past. It is clear that many practical dynamic problems such as crack
propagation in ductile materials, stress-wave propagation, and high-rate metal-forming proces
ses can be treated satisfactorily if the rate dependence of plastic material behavior is
considered. An observation from experiments of plastic-wave propagation in tubes or rods [23
28] concluded that the mechanical behavior of strain-rate-sensitive materials cannot be des
cribed by a single stress-strain curve, but may be explained by a set of curves each
corresponding to a specific strain rate. Various constitutive equations have been proposed in
the past to accommodate the strain-rate effect. Most of them, based on the observed
phenomenon, have assumed that the plastic rate of strain is a function of the dynamic overstress
([29-31], et at.). Critescu [32] subsequently generalized the idea into a full quasi-linear con
stitutive equation as follows:

(24)

where the functions 'I' and <II represent, respectively, the noninstantaneous and the in
stantaneous response of the material to the increment of stress u, and t is the time. Note that
this equation does not account for the dependence of the material behavior on the strain-rate
history. Many researchers, such as Klepaczko[33], and Senseny et at. [34], have shown that the
strain-rate history effect can play a very important role in the wave-propag.tion problems.
More discussion on the strain rate and strain-rate history effects can be found in [12, 21].

In the improved endochronic theory, the values of Uo and U y (in eqns 16 and 18) are
functions of strain rate. Thus, for each strain rate, there is a corresponding stress-plastic strain
curve. As indicated in [12, 21] assuming k of eqn (14) to be equal to 1 on the curve of reference
strain rate, i.e. Q = Qo, the following expression for the k function can describe the dynamic
stress-strain curve of a-titanium nicely for strain rates ranging from 10-5 to 10-2 S-I.

k(Q) = 1- ka log (gJ, (25)

where ka is. a strain-rate-sensitive parameter and can be determined following the procedures
described in [12]; and 00 is a reference strain rate, which is conveniently chosen. Note that for
a different value of 00, ka needs to be modified accordingly. Figure 3 presents the results of
three-stepped change of strain rate. Loading from the virgin state at 01 =2 X 10-4 s-I up to
€ =0.025. The 0 then drops to 00 =2 X 10-5 S-I, while the loading continues until € =0.032, at
which time the strain rate suddenly jumps to 02 = 8 X 10-4 S-I for a while and then back to the
initial strain rate QI = 2 X 10-4 S-I. The figure also shows the stress-strain curves at three
different constant strain rates (dash, chain-dash, and dot lines). The experimental curves of
reference strain rate (same as dot line) are taken from [35]; it can be seen that the agreement
between predicted and experimental results is excellent. As indicated in Fig. 3, the change from
lower strain rate to higher strain rate would cause the stress level to increase gradually from the
lower constant strain-rate curve to the higher-strain-rate curve; the change from higher strain
rate to lower strain rate is almost instantaneous. Note that due to small change in the range of
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Fig. 3. Three-stepped challle of strain rate for a-ri.

strain rate, the elastic response in the low to high strain rate change is not obvious in this figure
as reported in [21].

For more decades of the strain-rate range, the linear function of eqn (25) is not adequate in
representing the entire spectrum for a-titanium. Therefore, a higher-order term must be used.
A quadratic form of strain-rate function is proposed to describe the strain rate ranging from
10-5 to 1<Y S-1 as follows:

(26)

where, kb is the second-order strain-rate-sensitive parameter. Figure 4 presents the stress-strain
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Fig. 4. Stress-strain curves of a-Ti for various constant strain rates.
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curves of a-titanium at constant strain rate ranging from 2 x 10-5 to 102
S-1 using eqn (26). The

values of ka and kb are obtained by fitting eqn (26) through data points in [35]. The material
constants used in the present calculation for a-titanium are as follows:

Eo = 1l0GPa, Et =0.413 GPa, (Ty =0.351 GPa, (To =0.42 GPa, n =200, p =4.52 x IW kg/m 3
,

ka =0.04, and kb =0.002. Hence, it is found that the quadratic function of strain-rate sensitivity
can predict adequate dynamic stress-strain curves over a large range of strain rates in
a-titanium.

6. VISCOPLASTIC WAVE PROPAGATION UNDER UNIAXIAL STRESS

To show the influence of strain rate on the dynamic material response using
the improved endochronic time, the problem of longitudinal wave propagation in thin rods will
be studied as an example. Let an elastic hitter impact on a semi-infinite long a-titanium slender,
thin-walled tube through a transmitter. The constitutive equation for the uniaxial stress with
strain-rate effect as derived in the previous section can be written as

1
1k1-1(Tt - +J Et = O.

[
E- kar ]+_I_[E_kao«(T-r)] Eo

1+l+f3( l-kI 0+ l+f3(

(27)

Equation (27) was arrived by substituting eqns (22) and (23) into eqn (21). The equation of
motion and the compatibility condition are

and

(T, + pUt = 0

Et +u, = 0,

(28)

(29)

where U is the longitudinal particle velocity, x is the distance from the impact end of the rod to
the cross section under consideration. Subscripts x and t denote the partial differentiation with
respect to the corresponding variable. Compressive stress, compressive strain, and velocity in
the positive x direction are taken to be positive.

Equations (27H29) comprise a system of equations for three explicit variables, (T, E, and u,
and four implicit functions, k, (, r, and Q, which can be found from constitutive equations
derived previously. Numerical solutions were obtained for the above set of equations by means
of the method of characteristics using a rectangular mesh similar to that in [35]. During
calculation, the strain rate was considered constant for each small time increment, and the
following characteristics were used to obtain the numerical solution for the system of eqns
(27H29):

and

where

dx
-= +cdt -

dx =0,

I 1 k11-1
C = -;;/[E _ kar ] +_1_ [E _kao«(T- r)] + Eo .

I + l+ f3( I - k1 0+ 1+ f3(

(30)

(31)

(32)

The corresponding differential equations along the characteristics for this numerical procedures

are

dx
d(T± pcdu =0; on dt = ± c; (33)
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(34)

The upper and lower signs in eqn (33) correspond to each other.
The velocity boundary condition was assumed to be of a smooth transition consisting of two

parabolic segments during the period of rise time similar to that used by Hsu and Clifton[35],
Le.

u(O, t) =O.5uo[1+ (t- I )(2-lt-11)]' (35)

where Uo is the prescribed constant value of u after the rise time, and tit is one-half of the rise
time. For t greater than the rise time, the velocity u(O, t) is assumed to remain constant until
unloading begins. At this time the longitudinal stress u(O, t) is taken to decrease to zero along a
curve of the form of eqn (35). The corresponding change in the velocity u(O, t) is such that
longitudinal separation of the transmitter and specimen would result.

Experimental and theoretical work of the aforementioned problem has been studied by Hsu
and Clifton [35]. The theoretical work in [35] was carried out using elastoplastic flow theory
with the dynamic overstress derived from dislocation theory.

The numerical results using the improved endochronic time and theoretical and experimen
tal results of [35] are compared in Fig. 5 in terms of strain-time profiles for Uo =37.34 m/s. All
the material parameters involved were determined from the set of constant strain rate curves
presented in Fig. 4 using the procedures described in Section III. The values of these material
constants are given in the paragraph following eqn (26). The qualitative features of the
computed and experimental profiles are in good agreement. As indicated in [35], neither the
experiment nor the computed profiles show the steep, low-velocity plastic wave front or the
plateau of uniform strain that would be expected from a rate-independent theory or from
experiments on a less rate-sensitive material such as aluminum. The major discrepancy between
computed and measured strain-time profiles is that the precursor decay in the former is
considerably slower than that in the latter. This discrepancy exists on both results using
endochronic and flow theory. However, there is a consistant difference between endochronic
and flow theory; i.e. the endochronic strain-time profiles seems to be parallel to the experimen
tal results, although they are always on the higher side while the flow-theory prediction has a
tendency to cross over the experimental curves.

The computed dynamic stress-strain curves and the stress-time profiles at various locations
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[36] also show the influence of rate sensitivity on the wave profiles. The stress level in the wave
is clearly well above the level in quasi-static tensile tests at the same values of strain. Figure 6
presents the computed longitudinal-wave profiles and contours of constant strain in the x-I
plane for a-titanium with "0 = 37.34 m/s. As can be seen from the figure, the contours of the
constant strain almost behave as a straight line similar to the simple wave solution, at least in the
relPon near the impact end.

Figures 7 and 8 present similar results for a-titanium with Uo =46.73 m/s. It seems that all
the observations in the case of "0 =37.34 mls apply to the latter case. However, it is noted that
in the Fig. 8, the contours of the constant strain begins to deviate from straight line for E equals
0.012. Thus the attenuation of wave profiles begins to appear for larger plastic strain.
Comparisons between computed and experimental results in the unloading region are all in good
aareement qualitatively (see Figs. 5 and 7), although computed values using endochronic theory
are consistently higher than the experimental results at larger x. The results demonstrate that
the improved intrinsic time formulation can predict much better unloading behavior than the
simple endochronic theory.

7. CONCLUDING REMARKS

It has been shown that the differential endochronic constitutive equations derived in this
report can be used to describe the uniaxial stress behavior of a-titanium subject to 10adiDa
unloaclq-reloading cycles. The effects of strain rate and its history have been investigated.
Furthermore, these differential constitutive equations have been applied to the study of



598 HSUAN-CHI liN and HAN-CHIN Wu

viscoplastic wave propagation in a thin-walled tube subjected to impact loading. The theoretical
results have been compared with both the experimental results and the results of flow theory of
plasticity found in the literature.

The differential endochronic constitutive equations used in the computation are based on the
improved endochronic time. The parameter kl defined by the improved endochronic time has
been found to play an important role in the numerical computation. For k, ¥- 1, no discontinuity
is built into the constitutive equation, and thus the advantage found in the computation using
the simple endochronic theory is preserved. It has been found that a value of kl = 0.95 would
provide a good approximation.

Acknowledgements-We are grateful to Drs. C. A. Kot and G. S. Rosenberg for valuable suggestions and comments. The
support by Dr. Oscar Manley, Office of Basic Energy Sciences, U.S. Department of Energy, is greatly appreciated.

REFERENCES
I. K. C. Valanis, A theory of viscoplasticity without a yield surface-I: General theory-II. Application to mechanical

behavior of metal, Arch. Mech. Stosow. 23, 517-551 (1971).
2. K. C. Valanis, Ellect of prior deformation of cyclic response of metals. 1. Appl. Mech. 41, 441-447 (1974).
3. K. C. Valanis and H. C. Wu, Endochronic representation on cyclic creep and relaxation of metals. 1. Appl. Mech. 42,

67-73 (1975).
4. G. Wempner and J. Aberson, A formulation of inelasticity from thermal and mechanical concepts. Int. J. Solid

Structures 12, 705 (1976).
5. Z. P. Bazant and P. Bhat, Endochronic theory in inelasticity and failure of concrete. 1. Engng Mech. Div., ASCE 102,

701-722 (1976).
6. Z. P. Bazant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand. 1. Engng Mech. Div., ASCE 102,

225-238 (1976).
7. Z. P. Bazant, P. Bhat and C. L. Shieh, Endochronic theory for inelasticity and failure analysis of concrete structures.

Structural Engineering Rep. 1976-12/259 Northwestern University, Dec. 1976, to Oak Ridge National Laboratory
(ORNL/SUB/4403-1).

8. I. P. DeViIliers, Implementation of endochronic theory for analysis of concrete structures. Ph.D. Thesis, University
of California, Berkeley (1977).

9. H. C. Wu and H. C. Lin, Plastic waves in a thin-walled tube under combined longitudinal and torsional loads. 10th
Anniversary Meeting, Society of Engineering Science, North Carolina State University (Nov. 1973).

10. H. C. Wu and H. C. Lin, Combined plastic waves in a thin-walled tube. Int. 1. Solids Struct. 10,903-917 (1974).
II. H. C. Wu and H. C. Lin, Combined plastic waves in a thin-walled tube. 7th U.S. Nat. Congo Appl. Mech., University of

Colorado (June 1974).
12. H. C. Lin and H. C. Wu, Strain-rate effect in the endochronic theory of viscoplasticity. 1. Appl. Mech. 98, 92-% (1976).
13. H. C. Lin. Dynamic plastic deformation of axi-symmetric circular cylindrical shells. Nucl. Engng Des. 35, 283-293

(1975).
14. H. C. Lin, Dynamic inelastic response of thick shells using endochronic theory and the method of nearcharacteristics.

13th Ann. Meeting, Society of Engineering Science, NASA CP-2001, 2, PP. 449-458. (1976).
15. H. C. Lin, B. 1. Hsieh and R. A. Valentin, The application of endochronic plasticity theory in modeling the dynamic

inelastic response of structural systems. Nucl. Engng Des. 66, 213-222 (1981).
16. H. C. Lin, Axial crack propagation in a pres&PJ'ized pipe due to ductile failure. 8th U.S. Nat. Congo Appl. Mech. UCLA

(June 1978).
17. H. C. Lin, Dynamic propagation of longitudinal cracks in a pressurized cylindrical shell due to ductile failure. Nucl.

Engng Des. 63, 137-142 (1981).
18. K. C. Valanis, An energy-probability theory of fracture. J. Mec. 14,843-4162 (1975).
19. K. C. Valanis and H. C. Wu, Fracture of plastic materials under proportional straining-I. Theoretical foundations-II.

Application to gray cost iron. J. Mec. 15, 543-577 (1976).
20. K. C. Valanis, Fundamental consequences of a new intrinsic time measure-plasticity as a limit of the endochronic

theory. Arch. Mech. 32, 171-191 (1980).
21. H. C. Wu and M. C. Yip, Strain-rate and strain-rate history effects on the dynamic behavior of metallic materials. Int.

J. Solids Structures 16, 515-536 (1980).
22. H. C. Wu and M. C. Yip. Endochronic description of cyclic hardening behavior for metallic materials. 1. Engng Mater.

Technol., Trans. ASME 103, 212-217 (1981).
23. J. F. Bell, Propagation of large amplitude waves in annealed aluminum. 1. Appl. Phvs. 31. 277-282 (1960).
24. 1. F. Bell, The physics of large deformation of crystalline solids. Springer Tracts in Natural Philosophy, Vol. 14.

Springer-Verlag, Berlin (1968).
25. H. Kolsky and L. S. Douch, Experimental studies in plastic wave propagation. 1. Mech. Phys. Solids 10, 195-223

(1%2).
26. O. W. Dillon, Jr., Experimental data on small-plastic deformation waves in annealed aluminum. Int. J. Solids

Structures 4, 197-223 (1968).
27. L. Efron and L. E. Malvern, Electromagnetic velocity-transducer studies of plastic wave in aluminum bars. Exp.

Mech. 9, 255-262 (1969).
28. C. H. Yew and H. A. Richardson Jr., The strain-rate effect and the incremental plastic wave in copper. Exp. Mech. 9,

366-373 (1969).
29. L. E. Malvern, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate

effect. J. Appl. Mech. 18, 203-208 (1951).
30. V. V. Sokolovskii, The propagation on elastic viscoplastic waves in bars. Prikl. Mat. Mek. 12,261-280 (1948).
31. P. Perzyna, The constitutive equations for rate-sensitive materials. Q. Appl. Math. 20, 321-332 (1963).



On the rate-dependent endochronic theory of viscoplasticity 599

32. N. Cristescu. Dynamic Plasticity. North Holland. Amsterdam (\967).
33. J. Klepaczko. Strain-rate history effects for polycrystalline aluminum and theory of intersections. J. Mech. Phys. Solids

.6. 255-266 (1968).
34. P. E. Senseny. J. Duffy and R. H. Hawley. Experiments on strain rate history and temperature effects during the plastic

deformation of close packed metals. J. Appl. Mech. 45, 60-66 (1978).
35. 1. C. C. Hsu and R. J. Clifton. Plastic waves in a rate sensitive material-I: waves of uniaxial stress. J. Mech. Phys.

Solids 12, 233-253 (1974).
36. H. C. Lin and H. C. Wu. On the improved endochronic theory of viscoplasticity and its application to plastic-wave

propagation. Argonne Nat. Lab. Rep.• ANL-CT-8I·37 (1981).


